martes, 25 de agosto de 2009

TEOREMA DE PITAGORAS

Teorema de Pitágoras
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
El Teorema de Pitágoras establece que en un triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los dos catetos (los dos lados menores del triángulo rectángulo: los que conforman el ángulo recto). Si un triángulo rectángulo tiene catetos de longitudes y , y la medida de la hipotenusa es , se establece que:

Contenido[ocultar]
1 Historia
2 Demostraciones
2.1 China: el Chou Pei Suan Ching, y el Chui Chang Suang Shu
2.2 Demostraciones supuestas de Pitágoras
2.3 Demostración de Platón: el Menón
2.4 Demostración de Euclides: proposición I.47 de Los Elementos
2.5 Demostración de Pappus
3 Notas
4 Referencias bibliográficas
5 Véase también
6 Enlaces externos
//

Historia [editar]
El Teorema de Pitágoras lleva este nombre porque su descubrimiento recae sobre la escuela pitagórica. Anteriormente, en Mesopotamia y el Antiguo Egipto se conocían ternas de valores que se correspondían con los lados de un triángulo rectángulo, y se utilizaban para resolver problemas referentes a los citados triángulos, tal como se indica en algunas tablillas y papiros, pero no ha perdurado ningún documento que exponga teóricamente su relación. La pirámide de Kefrén, datada en el siglo XXVI a. C., fue la primera gran pirámide que se construyó basándose en el llamado triángulo sagrado egipcio, de proporciones 3-4-5.

Demostraciones [editar]
El Teorema de Pitágoras es de los que cuentan con un mayor número de demostraciones diferentes, utilizando métodos muy diversos. Una de las causas de esto es que en la Edad Media se exigía una nueva demostración de él para alcanzar el grado de Magíster matheseos.
Algunos autores proponen hasta más de mil demostraciones. Otros autores, como el matemático estadounidense E. S. Loomis, catalogó 367 pruebas diferentes en su libro de 1927 The Pythagorean Proposition.
En ese mismo libro, Loomis clasificaría las demostraciones en cuatro grandes grupos: las algebraicas, donde se relacionan los lados y segmentos del triángulo; geométricas, en las que se realizan comparaciones de áreas; dinámicas a través de las propiedades de fuerza, masa; y las cuaterniónicas, mediante el uso de vectores.

China: el Chou Pei Suan Ching, y el Chui Chang Suang Shu [editar]

Prueba visual para un triángulo de a = 3, b = 4 y c = 5 como se ve en el Chou Pei Suan Ching, 500-200 a. C.

El Chou Pei es una obra matemática de datación discutida, aunque se acepta mayoritariamente que fue escrita entre el 500 y el 300 a. C. Se cree que Pitágoras no conoció esta obra. En cuanto al Chui Chang parece que es posterior, está fechado en torno al año 250 a. C.
El Chou Pei demuestra el teorema construyendo un cuadrado de lado (a+b) que se parte en cuatro triángulos de base a y altura b, y un cuadrado de lado c.
Demostración
Sea el triángulo rectángulo de catetos a y b e hipotenusa c. Se trata de demostrar que el área del cuadrado de lado c es igual a la suma de las áreas de los cuadrados de lado a y lado b. Es decir:

Si añadimos tres triángulos iguales al original dentro del cuadrado de lado c formando la figura mostrada en la imagen, obtenemos un cuadrado de menor tamaño. Se puede observar que el cuadrado resultante tiene efectivamente un lado de b - a. Luego, el área de este cuadrado menor puede expresarse de la siguiente manera:

Ya que .
Es evidente que el área del cuadrado de lado c es la suma del área de los cuatro triángulos de altura a y base b que están dentro de él más el área del cuadrado menor:

Con lo cual queda demostrado el teorema.

Demostraciones supuestas de Pitágoras [editar]

Se cree que Pitágoras se basó en la semejanza de los triángulos ABC, AHC y BHC. La figura coloreada hace evidente el cumplimiento del teorema.
Se estima que se demostró el teorema mediante semejanza de triángulos: sus lados homólogos son proporcionales.[1]
Sea el triángulo ABC, rectángulo en C. El segmento CH es la altura relativa a la hipotenusa, en la que determina los segmentos a’ y b’, proyecciones en ella de los catetos a y b, respectivamente.
Los triángulos rectángulos ABC, AHC y BHC tienen sus tres bases iguales: todos tienen dos bases en común, y los ángulos agudos son iguales bien por ser comunes, bien por tener sus lados perpendiculares. En consecuencia dichos triángulos son semejantes.
De la semejanza entre ABC y AHC:


De la semejanza entre ABC y BHC:


Los resultados obtenidos son el teorema del cateto. Sumando:

Pero , por lo que finalmente resulta:


La relación entre las superficies de dos figuras semejantes es igual al cuadrado de su razón de semejanza. En esto pudo haberse basado Pitágoras para demostrar su teorema
Pitágoras también pudo haber demostrado el teorema basándose en la relación entre las superficies de figuras semejantes.
Los triángulos PQR y PST son semejantes, de manera que:

siendo r la razón de semejanza entre dichos triángulos. Si ahora buscamos la relación entre sus superficies:


obtenemos después de simplificar que:

pero siendo la razón de semejanza, está claro que:

Es decir, "la relación entre las superficies de dos figuras semejantes es igual al cuadrado de la razón de semejanza".
Aplicando ese principio a los triángulos rectángulos semejantes ACH y BCH tenemos que:

que de acuerdo con las propiedades de las proporciones nos da:
(I)
y por la semejanza entre los triángulos ACH y ABC resulta que:


pero según (I) , así que:

y por lo tanto:

quedando demostrado el teorema de Pitágoras.

Los cuadrados compuestos en el centro y a la derecha tienen áreas equivalentes. Quitándoles los triángulos el teorema de Pitágoras queda demostrado.
Es asimismo posible que Pitágoras hubiera obtenido una demostración gráfica del teorema.
Partiendo de la configuración inicial, con el triángulo rectángulo de lados a, b, c, y los cuadrados correspondientes a catetos e hipotenusa –izquierda-, se construyen dos cuadrados iguales:
Uno de ellos –centro- está formado por los cuadrados de los catetos, más cuatro triángulos rectángulos iguales al triángulo inicial.
El otro cuadrado –derecha- lo conforman los mismos cuatro triángulos, y el cuadrado de la hipotenusa.
Si a cada uno de estos cuadrados les quitamos los triángulos, evidentemente el área del cuadrado gris (c2) equivale a la de los cuadrados amarillo y azul (b2 + a2), habiéndose demostrado el teorema de Pitágoras.

Demostración de Platón: el Menón [editar]

En uno de los meandros del Menón se plantea el problema de la duplicación del cuadrado –izquierda y centro-. La solución que elabora Platón encierra inesperadamente una demostración del teorema de Pitágoras –derecha-, si bien referida exclusivamente a los triángulos rectángulos isósceles.
Dinos, Sócrates, ¿cómo se adquiere la virtud? ¿Mediante la enseñanza o mediante el ejercicio?
Esta filosófica pregunta forma parte del Menón de Platón, y a su tenor no parece que la Geometría vaya a hacer acto de presencia en el Diálogo, pero el filósofo es quien maneja los hilos y unas páginas más adelante nos encontramos con cuadrados y superficies. En ese fragmento, Platón habla de que conocer es recordar. Cuando creemos estar aprendiendo, lo que sucede en realidad es que recordamos las verdades que nuestra alma pudo percibir de forma inmediata antes de encarnarse en el cuerpo.
En el texto Sócrates se lo demuestra a Menón llamando a uno de sus esclavos, que nunca ha sido educado, pero que, sin embargo, es capaz de llegar a demostrar el teorema de Pitágoras. Sócrates le plantea el problema de la duplicación del cuadrado. Sucesivas preguntas van sacando de la mente del esclavo la solución del problema, con lo que pretendidamente aquél no hizo sino "recordar" lo que ya "sabía". Ese método para sacar esos conocimientos es la mayéutica, en la cual, el individuo que conduce al otro hacia el conocimiento, como en este caso hace Sócrates, desempeña una función similar a la de una partera, donde lo que logra extraer de su interlocutor, es el conocimiento de lo verdadero.
Platón construye un cuadrado cuyo lado es de dos unidades (izquierda, gris). Su área vale cuatro unidades cuadradas. Trazando un nuevo cuadrado sobre su diagonal AB, obtiene un cuadrado de ocho unidades cuadradas (centro, azul), doble superficie de la del primero.[2] Hasta aquí la duplicación del cuadrado. Pero también se ha demostrado el teorema de Pitágoras (derecha): el área del cuadrado azul (8u2) construido sobre la hipotenusa AB del triángulo rectángulo ABC, es igual a la suma de las áreas de los cuadrados grises (4u2 cada uno) construidos sobre los catetos AC y BC. Generalizando: cada uno de los cuadrados construidos sobre la hipotenusa (la diagonal del cuadrado inicial) contiene cuatro de dichos triángulos.
Queda demostrado el teorema de Pitágoras, si bien restringido a los triángulos rectángulos isósceles.

No hay comentarios:

Publicar un comentario